数据的 “美颜术”:特征增强与数据清洗
在数字化浪潮席卷的当下,数据已然成为驱动各领域发展的核心动力。从电商平台精准推送商品,到金融机构评估信贷风险,再到医疗领域辅助疾病诊断,机器学习模型无处不在,而这些模型的性能优劣,很大程度上取决于数据的质量。就如同厨师烹饪美食,优质食材是基础,数据之于机器学习,便是那不可或缺的 “食材” 。
原始数据往往存在诸多问题,犹如未经雕琢的璞玉,夹杂着杂质。它可能包含大量缺失值,像是一幅拼图缺失了关键碎片;也可能存在异常值,如同平静湖面的突兀涟漪;重复值、错误值等更是屡见不鲜。这些问题数据会严重干扰机器学习模型的学习过程,导致模型的准确性和泛化能力大打折扣...