论文《TIMEMIXER: DECOMPOSABLE MULTISCALE MIXING FOR TIME SERIES FORECASTING》总结
本文发表于ICLR 2024会议,由蚂蚁集团与清华大学团队合作完成。针对时间序列预测中复杂时序变化的挑战,提出基于多尺度混合的全新视角,设计出全MLP架构的TimeMixer模型。该模型通过Past-Decomposable-Mixing(PDM)块和Future-Multipredictor-Mixing(FMM)块,分别在历史信息提取阶段对多尺度序列的季节和趋势成分进行分解混合,在未来预测阶段融合多预测器的互补能力;在18个真实世界基...