分类目录归档:强化学习

策略梯度上升-RL


Policy Gradient Ascent(策略梯度上升)是强化学习中直接优化策略参数的一类方法,核心思想是通过梯度上升调整策略网络的参数,使得智能体在环境中获得的期望累积回报最大化。它属于策略梯度(Policy Gradient)算法家族,适用于连续或高维动作空间场景(如机器人控制)。

核心思想:直接优化策略

与价值函数方法(如Q-learning,通过估计“状态-动作价值”间接优化策略)不同,策略梯度方法直接对策略参数$\theta$(如神经网络权重)进行优化。策略$\pi_\theta(a|s)$表示在状态$s$下选择动作$a$的概率(随机策略)或确定动作(确定性策略)。目标是最...

Read more

策略网络-RL


在强化学习(Reinforcement Learning, RL)中,策略网络(Policy Network)是直接输出智能体(Agent)动作策略的神经网络模型,是策略梯度(Policy Gradient)类算法(如REINFORCE、PPO、TRPO等)的核心组件。其核心作用是将环境状态映射到动作的概率分布(或确定性动作),指导智能体在不同状态下做出决策。

策略网络的核心特点

  1. 输入:通常是环境的状态(State),可以是图像(如像素矩阵)、数值向量(如机器人关节角度)等。
  2. 输出
  3. 对于离散动作空间:输出各动作的概率分布(通过Softmax激活函数),例如动作空间为3时,输出...

Read more

时间差分学习-RL


时间差分学习(Temporal Difference Learning, TD Learning)是强化学习(Reinforcement Learning, RL)中的核心方法之一,它巧妙结合了动态规划(Dynamic Programming, DP)和蒙特卡洛(Monte Carlo, MC)方法的优点,能够在无需完全知晓环境模型的情况下,通过采样交互数据在线更新值函数。以下从核心概念、算法原理、优势对比及应用场景等方面展开概述:

一、TD学习的核心思想

  1. 自举(Bootstrapping)与采样的结合
  2. 自举:利用当前已有的值函数估计来更新其他状态的值(类似DP,基于后续状态的估计...

Read more

动作价值函数


以下是关于动作价值函数(Action-Value Function)的详细中文解析:


核心定义

动作价值函数,通常表示为 ( Q(s, a) ),是强化学习(Reinforcement Learning, RL)的核心概念之一。它用于评估智能体(agent)在状态 ( s ) 下选择动作 ( a ) 后,遵循某个策略 ( \pi ) 所能获得的期望累积奖励。其数学定义为: [ Q^\pi(s, a) = \mathbb{E}\pi \left[ \sum^\infty \gamma^t r_{t+1} \mid s_0 = s, a_0 = a \right] ] 其中: - ( \g...

Read more

值函数近似-VFA


值函数近似(VFA)在强化学习中的应用与原理

1. 动机与背景
在传统强化学习(如Q-learning)中,状态和动作空间较小时,可通过表格(如Q表)直接存储每个状态的值。但当状态空间庞大(如围棋)或连续(如机器人控制)时,表格方法因存储和计算成本过高而失效。
值函数近似(VFA)通过参数化函数(如线性模型、神经网络)泛化值估计,使算法能处理高维或连续状态。


2. 核心方法
2.1 函数选择
- 线性模型
值函数表示为 ( V(s) = \theta^T \phi(s) ),其中 (\phi(s)) 是人工设计的特征向量(如位置、速度),(\theta) 是权重参数。
优点:计算...

Read more

蒙特卡洛方法-V0


蒙特卡洛方法(Monte Carlo Method)是一种基于随机采样和统计规律的数值计算方法,其核心是通过生成大量随机样本,利用概率统计规律来近似求解复杂数学问题。以下是其核心原理的详细解析:


1. 核心思想

蒙特卡洛方法的本质是“用随机性解决确定性问题”,通过以下步骤实现: 1. 将问题转化为概率模型:将待求解的问题(如积分、优化、概率分布等)映射到一个可通过随机实验模拟的统计模型。 2. 生成大量随机样本:通过随机数生成器或采样技术,模拟问题的可能状态或路径。 3. 统计结果逼近真实解:利用大数定律(Law of Large Numbers)和中心极限定理(Central Lim...

Read more

最佳决策路径-MDP


MDP(马尔科夫决策过程,Markov Decision Process)是用来建模决策过程的数学框架。最佳决策顺序通常指的是在给定的MDP环境中,如何选择一系列动作以最大化长期的回报。MDP主要由以下几个元素组成:

  1. 状态空间 (S):所有可能的状态集合。
  2. 动作空间 (A):所有可能的动作集合。
  3. 状态转移概率 (P):在某个状态下,采取某个动作后转移到另一个状态的概率。
  4. 奖励函数 (R):在某个状态下采取某个动作所获得的奖励。
  5. 折扣因子 (γ):用来权衡即时奖励与未来奖励的因子。

最佳决策顺序的目标是确定一个策略(policy),即在每个状态下选择的动作序列,以最大化从当前状态到终止...

Read more

一文搞懂强化学习:原理、算法与应用- V1


一、从生活实例理解强化学习

想象一下,你养了一只可爱的小狗,你希望它学会 “坐下” 这个指令。最开始,小狗对这个指令毫无概念,它可能在你发出指令后四处乱跑、玩耍。但当它偶然间坐下时,你立即给予它美味的零食作为奖励,同时给予它热情的夸赞,比如 “你真棒”。在这个场景里,小狗就是智能体,它所处的周围环境,包括你、房间等,构成了环境。小狗原本随意的状态,在听到指令后转变为坐下,这就是状态的变化。小狗做出坐下的动作,就是一次决策行动。而你给予的零食和夸赞,则是环境给予小狗的奖励。

随着你不断重复这个过程,小狗逐渐明白了 “坐下” 这个动作与获得奖励之间的关联。它开始主动在听到指令时坐下,因为它知...

Read more

强化学习概述-V0


强化学习(Reinforcement Learning, RL)是机器学习的一个分支,其核心思想是通过智能体(Agent)与环境(Environment)的交互,学习如何采取最优行动以最大化长期累积奖励。以下是其核心原理的概述:


一、核心要素

  1. 智能体(Agent):学习并做出决策的主体。
  2. 环境(Environment):智能体交互的对象,提供状态和反馈。
  3. 状态(State):环境在某一时刻的描述,记为 ( s )。
  4. 动作(Action):智能体在某一状态下采取的行为,记为 ( a )。
  5. 奖励(Reward):环境对智能体动作的即时反馈,记为 ( r )。
  6. 策略(Policy):智能体...

Read more