- 支持向量机-SVM 1
- 知识蒸馏 1
- 建模
- 特征提取
- 特征工程 1
- 特征归一化
- softmax 1
- 时间序列预测模型 1
- FinGPT 1
- FinML
- ChatGPT
- LLM
- GPT 1
- LSTM
- Transformer 1
- 梯度下降 1
- 特征工程 1
- 神经网络 1
- AI原理系列-强化学习 1
- AI原理系列-无监督学习 1
- AI原理系列-监督学习 1
- MoE架构的解析 1
- GPU 消费级与专业级性价比分析报告
- 算力集群的自建与租赁方案对比分析报告
- 训练一个1B的金融大模型需要花多少钱? 1
- AlphaNet 1
- 卷积神经网络
- 循环神经网络
- Bert
- AlphaNet
- Vnp...
分类目录归档:观点
特征编码:机器学习模型理解世界的桥梁
特征编码:机器学习模型理解世界的桥梁
在机器学习项目中,数据往往以各种形态呈现:用户ID、城市名称、产品类别、学历等级、日期时间……这些信息对人类而言含义清晰,但对绝大多数机器学习模型来说却如同天书。模型的核心是数学运算(向量、矩阵、梯度计算),它们只能直接处理数值型数据。这就是特征编码要解决的核心问题:将非数值型(类别型、文本型、时间型等)数据,转化为适合机器学习模型处理的数值型表示,同时尽可能保留或揭示原始数据中蕴含的有价值信息。
以下是特征编码解决的关键问题及其深层意义:
1. 解决数据格式兼容性问题:让模型“能看见”
- 根本矛盾: 模型(如线性回归、SVM、神经网络、大部分树模型...
当AI化身金融研究员:一场投资研究的智能革命
当AI化身金融研究员:一场投资研究的智能革命
在金融的世界里,每一个决策都关乎真金白银,容不得半点马虎。而投资研究,更是这场财富博弈中最关键的一环。传统的投资研究,往往需要研究员们耗费大量的时间和精力去收集、整理和分析数据,过程繁琐且效率低下。但现在,随着人工智能技术的飞速发展,一场投资研究的智能革命正在悄然上演。今天,就让我们一起走进这场革命,看看AI是如何化身金融研究员,改变投资研究的格局的。
一、技术架构:智能投资研究的核心逻辑
在这场智能革命的背后,是一套精心设计的技术架构。从相关的技术展示中,我们可以清晰地看到,其核心在于“多智能体协作 + 记忆增强 + 人类反馈 + 数据驱动...
Embedding 原理概述
Embedding 原理概述
Embedding(嵌入)是机器学习和人工智能领域的核心概念,本质是将高维、离散、稀疏的数据(如文字、图片、音频、用户、商品等)转换为低维、连续、稠密的实数向量表示的过程。这些向量被称为嵌入向量(Embedding Vector),其神奇之处在于能在向量空间中捕获并保留原始数据的语义、关系或特征。
为何需要 Embedding?
- 维数灾难与稀疏性: 像“词袋模型”这类方法,每个词用一个维度表示,词典庞大时向量维度极高且极度稀疏(大部分元素为0),计算效率低,难以捕捉语义。
- 语义鸿沟: 离散符号本身无法直接表达“相似性”(如“猫”和“狗”都比“汽车”更接近“...
Agentic AI 如何构建更好的解决方案?
利用智能体人工智能(Agentic AI)与多大型语言模型(LLMs)创建更智能解决方案的解读报告
一、引言
在人工智能技术飞速发展的当下,大型语言模型(Large Language Models,简称LLMs )已成为推动各领域创新的关键力量。而智能体人工智能(Agentic AI)概念的出现,进一步拓展了LLMs的应用边界,为构建更智能、更具协同性的解决方案提供了新路径。本次报告聚焦于“Using Agentic AI to create smarter solutions with multiple LLMs (step - by - step process)”这一主题,通过对相...
智能体(Agents)的“智能体化”程度探究
智能体(Agents)的“智能体化”程度探究:现状、挑战与未来方向
一、幻灯片内容解析
(一)核心问题:How agentic are our agents?(我们的智能体有多“智能体化”? )
这一问题聚焦于当下智能体(agents)在自主性、功能实现等维度,与理想中具备高度智能体特质(如自主决策、长期任务执行等)的契合度探究,是理解智能体发展现状与瓶颈的关键切入点。
(二)具体要点展开
- Many agents are pipelines(许多智能体是管道式结构 )
◦ Low degree of autonomy(低自主性 ):这类智能体多遵循预设的、线性的流程运行,像工厂流水线...
RLVR概述
以下是 RLVR(Reinforcement Learning with Verifiable Rewards,可验证奖励强化学习)的技术概述,综合其核心机制、应用场景、争议及最新进展:
一、技术原理与核心机制
- 基本框架
RLVR 是一种针对大模型推理任务的强化学习方法,其核心思想是利用可自动验证的奖励信号(如数学答案的正确性、代码的测试通过率)替代人工标注,驱动模型优化。训练过程包含: - 策略模型:生成候选答案及推理过程。
-
奖励函数:基于验证结果(如答案匹配或测试通过)给出 0/1 奖励,并结合格式规范性(如是否包含
\boxed{}
)设计复合奖励。 -
关键算法
- GR...
何时构建智能体?-v1
构建智能代理的决策智慧:何时该踏上智能代理构建之旅
一、引言
在人工智能技术浪潮席卷各行业的当下,智能代理(Agents)作为能自主执行任务、具备决策与交互能力的程序系统,逐渐成为企业与开发者优化流程、提升效率的重要工具。然而,并非所有任务场景都适合构建智能代理,盲目投入不仅会造成资源浪费,还可能因适配性不佳导致项目失败。Anthropic公司Barry Zhang提出的 “是否该打造智能代理” 检查清单,为我们提供了清晰的决策框架,从任务复杂度、价值、可行性和错误成本等维度,指引我们探寻何时该构建智能代理,让技术应用精准落地。
二、任务复杂度:智能代理的 “入场券”
(一)低复杂度任务...
何时构建智能体?-V2
构建智能代理的决策智慧:何时踏上智能代理构建之旅
一、引言
在人工智能重塑各行业的浪潮中,智能代理(Agents)——能够自主执行任务、具备决策与交互能力的程序系统——正日益成为企业和开发者优化流程、提升效率的关键工具。然而,并非所有场景都适合构建智能代理,盲目投入不仅浪费资源,更可能因适配性不佳导致项目失败。借鉴Anthropic公司Barry Zhang提出的“是否该打造智能代理”检查清单,我们可以从任务复杂度、价值、可行性和错误成本四个核心维度出发,建立清晰的决策框架,精准判断构建智能代理的恰当时机,确保技术应用有效落地。
二、任务复杂度:智能代理的“入场券”
- (一)低复杂度任务...
挖掘金融数据背后的真相
1. 金融数据研究方法论剖析
1.1 微观主体行为分析法
金融数据是微观经济主体行为的直接反映,深入剖析这些数据能够揭示经济活动的本质。从资金来源角度看,社会融资规模(扣除政府融资)是衡量企业融资策略的关键指标。例如,当社融数据中企业债券融资占比上升时,表明企业在优化债务结构,倾向于通过债券市场获取低成本资金,这可能反映出市场利率处于较低水平,企业对未来投资回报率持乐观态度。而财政净支付数据则能体现政府对经济的调控力度和方向,如财政净支付增加,意味着政府在加大基础设施建设等领域的投入,这将刺激相关产业的发展,带动企业订单增加和就业机会上升。
从资金去向角度分析,存款、现金和金融投资的动态...