分类目录归档:人工智能

【置顶】AI from zero to hero-2025课程大纲


以下是一个关于“AI from zero to hero”一年的视频课程大纲:

第一季度:基础构建(第 1 - 3 个月)

  • 第 1 个月:
    • 人工智能概述:历史、应用领域、发展趋势
    • Python 编程基础:语法、数据类型、控制结构、函数
  • 第 2 个月:
    • Python 数据分析库:Numpy、Pandas 数据处理与分析
    • 数据可视化:Matplotlib、Seaborn 绘制图表
  • 第 3 个月:
    • 数学基础:线性代数、概率论与数理统计复习
    • 机器学习基础概念:监督学习、无监督学习、模型评估指标

第二季度:机器学习深入(第 4 - 6 个月)

  • 第 4 个月:
    • 线性回归模型:原理、...

Read more

【置顶】个人量化全栈开发-自研课程


以下是一份补充了人工智能、机器学习和深度学习相关内容的“个人量化全栈开发 - 自研课程”大纲:


个人量化全栈开发 - 自研课程大纲

一、课程简介

本课程旨在培养学员成为具备全栈开发能力且能运用人工智能技术的量化开发者,全面涵盖前端、后端、数据库、量化策略开发以及人工智能相关领域知识,通过丰富的实际项目案例,使学员掌握从数据获取、分析到可视化展示,以及构建智能量化交易系统的综合技能,为进入量化金融与人工智能融合的前沿领域或提升个人专业能力奠定坚实基础。

二、课程目标

  • 熟练掌握前端开发技术,包括 HTML、CSS、JavaScript 及主流框架,构建出功能丰富、用户体验良好的量化交易前...

Read more

策略梯度上升-RL


Policy Gradient Ascent(策略梯度上升)是强化学习中直接优化策略参数的一类方法,核心思想是通过梯度上升调整策略网络的参数,使得智能体在环境中获得的期望累积回报最大化。它属于策略梯度(Policy Gradient)算法家族,适用于连续或高维动作空间场景(如机器人控制)。

核心思想:直接优化策略

与价值函数方法(如Q-learning,通过估计“状态-动作价值”间接优化策略)不同,策略梯度方法直接对策略参数$\theta$(如神经网络权重)进行优化。策略$\pi_\theta(a|s)$表示在状态$s$下选择动作$a$的概率(随机策略)或确定动作(确定性策略)。目标是最...

Read more

策略网络-RL


在强化学习(Reinforcement Learning, RL)中,策略网络(Policy Network)是直接输出智能体(Agent)动作策略的神经网络模型,是策略梯度(Policy Gradient)类算法(如REINFORCE、PPO、TRPO等)的核心组件。其核心作用是将环境状态映射到动作的概率分布(或确定性动作),指导智能体在不同状态下做出决策。

策略网络的核心特点

  1. 输入:通常是环境的状态(State),可以是图像(如像素矩阵)、数值向量(如机器人关节角度)等。
  2. 输出
  3. 对于离散动作空间:输出各动作的概率分布(通过Softmax激活函数),例如动作空间为3时,输出...

Read more

时间差分学习-RL


时间差分学习(Temporal Difference Learning, TD Learning)是强化学习(Reinforcement Learning, RL)中的核心方法之一,它巧妙结合了动态规划(Dynamic Programming, DP)和蒙特卡洛(Monte Carlo, MC)方法的优点,能够在无需完全知晓环境模型的情况下,通过采样交互数据在线更新值函数。以下从核心概念、算法原理、优势对比及应用场景等方面展开概述:

一、TD学习的核心思想

  1. 自举(Bootstrapping)与采样的结合
  2. 自举:利用当前已有的值函数估计来更新其他状态的值(类似DP,基于后续状态的估计...

Read more

Airflow-Provider-自研课程-0101004


在Apache Airflow中,Provider是用于扩展Airflow功能的插件包。它们包含与特定服务或系统交互所需的操作符(Operators)、钩子(Hooks)、传感器(Sensors)等组件。通过安装和使用这些Provider包,您可以方便地在工作流中集成各种外部服务,如数据库、云平台、消息队列等。

例如,如果您需要在Airflow中连接并操作MySQL数据库,您可以安装与MySQL相关的Provider包。该包提供了连接MySQL所需的钩子和操作符,使您能够在工作流中执行数据库操作。

需要注意的是,不同的数据库或服务需要安装对应的Provider包,以确保Airflow...

Read more

查看 Airflow 中 DAG 运行的详细日志-自研课程-0101002


要查看 Apache Airflow 中 DAG 运行的详细日志,您可以通过以下几种方式进行:

  1. 通过 Airflow Web 界面查看任务日志:

  2. 打开 Airflow Web 界面(默认地址为 http://localhost:8080)。

  3. 在“DAGs”视图中,找到并点击您感兴趣的 DAG。
  4. 在 DAG 的“树状图”或“图形”视图中,点击特定任务实例。
  5. 在弹出的窗口中,切换到“日志”标签页,即可查看该任务的详细运行日志。

  6. 直接访问日志文件:

Airflow 将任务日志保存在本地文件系统中,默认路径为 AIRFLOW_HOME/logs。您可以直接访问这些日...

Read more

Airflow 中编写第一个 DAG-自研课程-0101001


要在 Apache Airflow 中编写第一个 DAG(有向无环图),您可以按照以下步骤进行:

  1. 创建 DAG 文件:在 Airflow 的 dags 目录下创建一个 Python 文件,例如 hello_world_dag.py。如果 dags 目录尚不存在,请先创建该目录。

  2. 导入必要的模块:在 DAG 文件中,导入 DAG 类和所需的操作符(Operator),例如 PythonOperatorBashOperator,以及日期时间模块。

python from airflow import DAG from airflow.operators.p...

Read more