主成分分析(PCA)及其在特征选择中的作用
引言
在数据科学的众多应用中,特征选择是一项至关重要的技术,它直接影响到模型的性能、可解释性以及计算效率。随着数据集维度的不断增加,传统的特征选择方法逐渐暴露出高维数据处理上的不足。主成分分析(PCA)作为一种降维技术,通过将高维数据映射到低维空间,减少特征空间的复杂度,同时保留原始数据中的大部分信息,成为了特征选择中的一种重要工具。本文将详细探讨PCA在特征选择中的作用,涵盖其基本原理、数学推导、具体应用以及实际中的优势和挑战。
1. PCA的基本原理
主成分分析(PCA)是一种统计技术,旨在通过线性变换将数据从原始的特征空间映射到一个新的空...