分类目录归档:基础设施

LLM概述-视频文字


LLM(Large Language Model,大语言模型)是一种基于深度学习的自然语言处理模型,能够理解和生成人类语言。其核心原理和架构主要基于Transformer模型,以下是LLM的原理和架构的详细说明:


1. LLM 的核心原理

LLM 的核心原理是通过大规模数据训练,学习语言的统计规律和语义表示,从而实现对自然语言的理解和生成。其关键点包括:

1.1 自监督学习

  • LLM 通常采用自监督学习(Self-supervised Learning)进行训练。
  • 训练数据是无标注的文本,模型通过预测被掩盖的词(Masked Language Modeling)或生成下一个词(Caus...

Read more

解锁MLOps:机器学习工业化的密钥-V1


解锁MLOps:机器学习工业化的密钥

在当今数字化时代,机器学习技术正以前所未有的速度推动着各个领域的变革。从智能语音助手到精准医疗诊断,从个性化推荐系统到自动驾驶汽车,机器学习的应用无处不在。然而,随着机器学习项目的日益复杂,如何高效地管理和部署这些模型成为了新的挑战。MLOps,作为一种将机器学习与软件工程相结合的新兴理念,应运而生,为解决这些问题提供了有效的途径。

MLOps:机器学习的新引擎

MLOps,即机器学习运维(Machine Learning Operations),是一套用于管理和优化机器学习模型开发、部署和运维的流程和方法。它融合了机器学习、软件工程、数据工程、云计...

Read more

MLOps:机器学习的新引擎


MLOps:机器学习的新引擎

在当今数字化浪潮中,机器学习犹如一颗璀璨的明星,照亮了众多领域的创新之路。而在机器学习的广袤宇宙里,MLOps(Machine Learning Operations)正逐渐崭露头角,成为推动其发展的强大引擎。简单来说,MLOps 是一种将机器学习模型从开发到部署、监控和维护的端到端流程进行标准化和自动化的实践。它就像是一位技艺精湛的指挥家,协调着数据科学家、工程师和运维人员等各个角色,让机器学习项目的每一个环节都能精准无误地运行,从而提升效率、可靠性与可重复性。 随着各行业对机器学习应用的深入,从智能推荐系统到精准医疗诊断,从金融风险预测到自动驾驶技术,...

Read more

Windows系统常用的快捷键


以下是一些Windows系统常用的快捷键:

系统操作类

  • 开始菜单与桌面相关
    • Windows键:打开或隐藏“开始”菜单。
    • Windows键+D:快速显示和隐藏桌面,可在工作与查看桌面之间快速切换。
    • Windows键+E:打开“文件资源管理器”,方便快速访问文件和文件夹。
    • Windows键+L:如果连接到网络域,则锁定计算机;如果没有连接到网络域,则切换用户。
  • 窗口管理类
    • Windows键+方向键(上下左右):可以将当前窗口整体移至屏幕的最上、最下、最左、最右边,相当于用鼠标拖动窗口至边缘直到鼠标不能再移动的那种。
    • Windows键+Shift+方向键(左右):在多显示器设置中,可...

Read more

人类反馈强化学习-RLHF


人类反馈强化学习(Reinforcement Learning from Human Feedback,RLHF)是一种将人类反馈融入强化学习过程的技术,它在提升人工智能系统的性能和行为方式上发挥着关键作用。

一、基本原理

  1. 强化学习基础
  2. 强化学习是机器学习中的一个领域,其中智能体(agent)在环境(environment)中采取一系列行动(action),目的是最大化累积奖励(reward)。智能体根据环境反馈的奖励信号来学习最优策略(policy),即决定在什么状态下采取什么行动。
  3. 例如,在训练一个机器人走迷宫的场景中,机器人(智能体)在迷宫(环境)中移动(行动),当它成功走出迷宫...

Read more

人工数据合成


人工数据合成(Artificial Data Synthesis)是指通过算法、统计模型或模拟技术生成与真实数据相似的合成数据的过程。这种方法广泛应用于机器学习、数据分析、软件测试等领域,特别是在真实数据稀缺、敏感或获取成本高的情况下。合成数据能够保留原始数据的统计特性和模式,同时确保隐私和安全。


人工数据合成的主要应用场景:

  1. 机器学习和AI训练
  2. 当真实数据不足或分布不均衡时,合成数据可用于扩充训练数据集。
  3. 通过生成多样化的数据样本,提升模型的性能和泛化能力。

  4. 隐私保护

  5. 合成数据可以替代敏感信息(如个人身份信息、医疗记录),在保护隐私的同时实现数据共享。

  6. 软件测试与...

Read more

错误分析-ML


错误分析(Error Analysis)是一种系统化的过程,用于识别、理解和纠正系统、模型或流程中的错误。它在机器学习、软件开发、工程和科学研究等领域中广泛应用,目的是通过分析错误及其根本原因来提高性能、准确性或可靠性。

以下是错误分析的结构化步骤:


1. 识别错误

  • 检测:定位错误发生的位置(例如,机器学习模型中的错误预测、软件中的 bug 或流程中的故障)。
  • 分类:将错误归类(例如,假阳性、假阴性、语法错误或逻辑错误)。

2. 量化错误

  • 测量错误的频率或严重程度。
  • 使用以下指标:
    • 准确率:正确预测或结果的百分比。
    • 精确率/召回率:用于分类任务。
    • 均方误差(MSE):用于回归任...

Read more

MLOPS原理-视频文字


MLOps 原理与知识体系介绍

MLOps(Machine Learning Operations)是一种将机器学习模型从开发到部署、监控和维护的端到端流程进行标准化和自动化的实践。它借鉴了 DevOps 的理念,旨在提高机器学习项目的效率、可靠性和可重复性。

MLOps 的核心原理包括:

  • 自动化: 自动化机器学习工作流的各个环节,包括数据准备、模型训练、评估、部署和监控,以减少人为错误,提高效率。
  • 协作: 促进数据科学家、工程师和运维人员之间的协作,打破部门壁垒,实现知识共享和高效沟通。
  • 可重复性: 确保机器学习模型的训练和部署过程可重复,以便于调试、优化和版本控制。
  • 监控: ...

Read more

深度强化学习-交易领域


深度强化学习(Deep Reinforcement Learning, DRL)在算法交易领域受到了广泛关注,因为它能够在复杂和动态的环境中学习最优策略。以下是DRL在交易中的应用概述,包括关键概念、挑战以及实现DRL交易系统的步骤。


DRL在交易中的关键概念

  1. 强化学习(RL)基础
  2. RL涉及一个智能体与环境交互,以最大化累积奖励。
  3. 在交易中,智能体根据市场数据学习做出买入、卖出或持有的决策。

  4. 马尔可夫决策过程(MDP)

  5. 交易环境被建模为MDP,包括:

    • 状态(S):市场数据(如价格、成交量、技术指标)。
    • 动作(A):交易决策(如买入、卖出、持有或仓位管理)。
    • 奖励(R)...

Read more

支持向量机-SVM-视频文字


支持向量机(Support Vector Machine, SVM)是一种经典的监督学习算法,主要用于分类和回归任务,尤其在高维数据中表现优异。它的核心思想是通过寻找一个最优的超平面来分隔不同类别的数据,从而实现分类。以下是对SVM的详细介绍。


核心概念

  1. 超平面
  2. 在n维空间中,超平面是一个n-1维的子空间。对于二维数据,超平面是一条直线;对于三维数据,它是一个平面。SVM的目标是找到一个超平面,能够将不同类别的数据点分开。

  3. 支持向量

  4. 支持向量是离超平面最近的样本点,它们是决定超平面位置的关键。这些点“支持”了超平面的位置,因此得名。

  5. 间隔

  6. 间隔是超平面到最近支持...

Read more