知识蒸馏
一、定义
知识蒸馏是一种模型压缩和知识迁移的技术。它的主要目的是将一个复杂的、高性能的大型模型(称为教师模型)所学到的知识,提炼并传递给一个相对简单的小型模型(称为学生模型),使得学生模型能够在保持一定性能的同时,减少模型的复杂度,提高推理速度和效率。
二、知识蒸馏的原理
(一)软标签与硬标签
- 硬标签(Hard Labels)
- 在传统的机器学习模型训练中,标签通常是确定性的、“硬”的类别标签。例如,在图像分类任务中,如果一张图像是猫,那么它的标签就是“猫”,这是一个单一的、明确的类别。模型训练的目标是使预测结果尽可能地匹配这个硬标签。
- 软标签(Soft Labels)
- 知识蒸...