自回归(Autoregressive)模型 是机器学习、时间序列分析和自然语言处理(NLP)领域的重要概念,主要用于基于序列的过去值预测未来值。以下是自回归模型的核心内容、应用和示例的中文解释:
核心特性
- 定义:
- 自回归表示输出依赖于自身过去的值。
-
数学表达式: [ X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t ] 其中 (X_t) 是时间 (t) 的值,(c) 是常数,(\phi_i) 是系数,(\epsilon_t) 是噪声项。
-
顺序性:
- 模型逐步预测输出值,特别适合有时间...