- 定义
-
学习率(Learning Rate)是机器学习和深度学习中优化算法的一个重要超参数。它决定了在每次迭代过程中,模型参数朝着损失函数梯度下降方向更新的步长大小。简单来说,学习率控制着模型学习的速度。例如,在梯度下降算法中,对于一个参数(\theta),其更新公式为(\theta = \theta - \alpha \times \nabla L(\theta)),其中(\alpha)就是学习率,(\nabla L(\theta))是损失函数(L)关于(\theta)的梯度。
-
作用和影响
- 学习速度:如果学习率设置得较大,模型参数更新的步长就大,模型学习的速度会加快。例如,在训...
分类目录归档:基础设施
显示解-
- 定义
-
在数学和工程等领域,“显示解”(也称为显式解)是指能够用明确的公式表示出未知量的解。与隐式解相对,隐式解是通过一个方程(组)来隐含地定义未知量,而没有将未知量直接解出来。例如,对于一元二次方程(ax^2 + bx + c = 0)((a\neq0)),其显示解为(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}),这个公式直接给出了(x)的取值,这就是显示解。
-
特点
- 直观性:显示解的最大优点是直观易懂。它直接给出了未知量与已知量之间的关系,人们可以很容易地代入已知参数的值来计算未知量。例如,在上述一元二次方程的显示解中,只要知道(a)、(b)、...
训练损失-
- 定义
-
训练损失(Training Loss)是在模型训练过程中,用于衡量模型预测结果与训练数据真实标签之间差异的指标。它是基于训练数据集计算得到的损失函数值。例如,在一个神经网络用于图像分类的训练过程中,对于每一批(batch)训练图像,将其输入网络得到预测类别概率,再与图像的真实类别标签通过损失函数(如交叉熵损失)进行计算,得到的损失值就是训练损失。
-
计算方式
-
首先要确定损失函数。不同的任务(如回归、分类等)有不同的损失函数。对于回归任务,常见的是平方损失(MSE)函数,计算方式为(L = \frac{1}{n}\sum_{i = 1}^{n}(\hat{y}_i - y_...
平方损失-
- 定义
- 平方损失(Squared Loss),也称为均方误差(Mean Squared Error,MSE),是一种用于衡量预测值与真实值之间差异的损失函数。给定一组预测值(\hat{y}i)和对应的真实值(y_i)((i = 1,2,\cdots,n)),平方损失函数的计算公式为(L(\hat{y},y)=\frac{1}{n}\sum^{n}(\hat{y}_i - y_i)^2)。例如,在一个简单的线性回归问题中,我们有真实值(y = [1,2,3]),预测值(\hat{y}=[1.2,1.8,3.1]),则平方损失(L=\frac{1}{3}[(1.2 - 1)^2+(1.8 -...
空间变换器-
- 定义与概念
-
空间变换器(Spatial Transformer)是一种在深度学习架构(特别是卷积神经网络,CNN)中用于对输入数据(通常是具有空间结构的数据,如二维图像或三维体数据)进行空间变换的模块。它能够自动学习并应用空间变换,如平移、旋转、缩放和剪切等操作,以增强模型对数据空间变化的适应性。
-
工作原理
- 参数化的空间变换:空间变换器通过一组可学习的参数来定义空间变换。这些参数通常构成一个变换矩阵,例如在二维空间中,仿射变换(Affine Transformation)矩阵可以表示平移、旋转、缩放和剪切等操作。对于一个点((x,y)),经过仿射变换后的坐标((x',y'))可...
修正线性单元-
- 定义与公式
-
修正线性单元(Rectified Linear Unit,ReLU)是一种在深度学习中广泛使用的激活函数。它的定义非常简单,对于输入值(x),ReLU函数的输出为(y = max(0,x))。这意味着当(x)大于等于(0)时,输出等于(x);当(x)小于(0)时,输出为(0)。
-
优势
- 计算效率高:ReLU函数的计算非常简单,只需要一个比较操作(判断(x)是否大于等于(0))和一个可能的赋值操作(当(x\geq0)时,(y = x))。与其他一些复杂的激活函数(如Sigmoid和Tanh)相比,ReLU的计算速度更快,特别是在处理大规模的神经网络和大量的数据时,这种计...
隐藏层-
- 定义与概念
-
在神经网络中,隐藏层(Hidden Layer)是位于输入层(Input Layer)和输出层(Output Layer)之间的一层或多层神经元(Neuron)。之所以称为“隐藏”,是因为这些层的神经元在输入和输出之间起到了中间处理的作用,其输出不会直接作为最终结果展示,而是作为信息的中间传递者。例如,在一个用于图像分类的多层感知机(Multilayer Perceptron,MLP)中,输入层接收图像的像素值,输出层输出图像所属的类别概率,而中间的隐藏层则负责对输入数据进行复杂的特征提取和转换,将像素值这样的原始输入转换为更有助于分类的高级特征表示。
-
工作原理
- 神...
旋转-
- 定义与基本概念
-
在数学和计算机科学等多个领域,“rotation”(旋转)是一种几何变换操作。在二维平面中,它是指将一个点或者一个图形围绕一个固定点(称为旋转中心)按照一定的角度进行转动。例如,对于平面直角坐标系中的一个点((x,y)),绕原点((0,0))逆时针旋转(\theta)角度后,新的坐标((x',y'))可以通过特定的旋转公式计算得到。在三维空间中,旋转则更加复杂,需要考虑绕不同坐标轴(如(x)轴、(y)轴、(z)轴)的旋转或者通过旋转矩阵来表示更一般的旋转情况。
-
旋转的数学表示(以二维为例)
- 旋转矩阵:在二维平面中,绕原点旋转(\theta)角度的旋转矩阵为(R ...
空间变换层-
- 定义与概念
-
空间变换层(Spatial Transformer Layer)是一种在神经网络架构中的特殊层,它的主要目的是对输入的数据(通常是具有空间结构的数据,如图像)进行空间变换。这种变换是可学习的,能够自动地根据数据和任务的需要调整输入数据的空间位置、方向、尺度等属性。
-
工作原理
- 参数化的空间变换:空间变换层通过一组参数来定义空间变换。这些参数可以是仿射变换(Affine Transformation)矩阵的元素,包括平移(Translation)、旋转(Rotation)、缩放(Scaling)和剪切(Shear)等操作的参数。例如,一个二维仿射变换矩阵(T)的一般形式...
神经网络架构
- 定义与概念
-
神经网络架构(Neural Network Architecture)是指神经网络的整体结构设计,包括神经元的组织方式、层与层之间的连接关系、信息流动的路径以及各种参数的配置等诸多方面。它就像是一座建筑物的蓝图,规定了神经网络如何构建和运作。
-
主要组成部分
- 神经元(Neuron):是神经网络的基本单元。神经元接收输入信号,对这些信号进行加权求和,然后通过激活函数(Activation Function)产生输出。例如,在一个简单的感知机(Perceptron)中,神经元有多个输入((x_1, x_2, \cdots, x_n)),对应的权重为((w_1, w_2, ...