LLMOps(Large Language Model Operations)是指对大型语言模型(Large Language Models, LLMs)的运维、管理和优化的全过程。这一概念主要用于确保在生产环境中使用大规模语言模型时,能够高效、可靠、安全地进行部署、监控、优化以及更新。
随着大型语言模型(如 GPT-3、GPT-4、BERT 等)在各行各业中的广泛应用,LLMOps 成为支持这些技术在实际业务中的稳定性、可扩展性、可用性和合规性的重要手段。它借鉴了传统的 MLOps(机器学习运维)的理念,但侧重于特定的挑战,如模型规模、计算需求、推理速度、数据隐私以及伦理问题等。