这篇论文是来自ETH Zurich等机构的研究人员撰写的 “Reasoning Language Models: A Blueprint”,核心是提出一个用于构建、分析和实验推理语言模型(RLMs)的综合蓝图,旨在降低RLMs设计和实验的门槛,推动该领域的发展。
- RLMs的发展与挑战:RLMs结合了大语言模型(LLMs)和先进推理机制,在多领域有变革性突破,但存在成本高、专利性质以及架构复杂等问题,导致获取和扩展困难。其技术基础不透明,组件间的协同机制也尚未明确。
- RLMs的本质:由LLMs、强化学习(RL)和高性能计算(HPC)共同发展而来,具备系统2思维能力。与标准LLMs的插值能...