运算符嵌套和卷积神经网络
全文总结 本文主要介绍了对 AlphaNet--V1 模型进行改进得到 AlphaNet--V3 模型的过程,以及与随机森林模型进行比较。具体内容包括在 AlphaNet--V1 基础上加入多步长的特征提取层、将池化层替换为门控循环单元(GRU)、调整预测标签值、训练和测试模型、与随机森林模型对比等。 重要亮点
- AlphaNet-V1 的不足与改进方向:AlphaNet-V1 给出的标签预测值几乎都为常数,不理想。因此在 AlphaNet-V3 中进行两方面改进,一是调整网络结构,加入不同步长的特征提取层并将池化层转换为 GRU;二是调整标签值,转换为涨跌方向...