分类目录归档:人工智能

梯度消失和梯度爆炸-问题解释


梯度消失和梯度爆炸是深度神经网络训练中常见的问题,尤其在较深的网络或循环神经网络(RNN)中表现明显。这些问题会导致模型难以收敛或出现不稳定性。以下是这两个问题的详解,包括其成因、影响及应对策略。


一、梯度消失问题

1. 问题描述

梯度消失是指在反向传播过程中,梯度逐层变小,最终接近于零。这使得靠近输入层的权重更新几乎停止,导致模型无法有效训练。

2. 成因

  • 激活函数的性质
  • Sigmoid 和 Tanh 激活函数在接近饱和区时(输入值绝对值较大),导数趋近于零。
  • 在反向传播中,梯度是通过链式法则逐层相乘的,若每层梯度小于 1,最终梯度会指数级衰减。

  • 网络深度

  • 网络越深,梯...

Read more

机器学习知识体系-AI


构建机器学习知识体系是理解和掌握机器学习的核心过程。以下是一个较为系统的知识体系框架,可以帮助你全面学习和应用机器学习。


一、基础知识

1. 数学基础

  • 线性代数
  • 矩阵、向量
  • 矩阵分解(SVD、PCA 等)
  • 特征值与特征向量

  • 概率与统计

  • 概率分布(正态分布、指数分布等)
  • 贝叶斯定理
  • 最大似然估计与贝叶斯估计

  • 微积分

  • 导数与梯度
  • 多元函数的偏导数
  • 梯度下降法

  • 优化理论

  • 凸优化
  • 拉格朗日乘子法

2. 编程基础

  • Python(推荐)、R、Julia 等
  • 数据处理库(Pandas、NumPy、SciPy)
  • 可视化工具(Matplotlib、Seaborn)

3. ...

Read more

Watson-IBM-AI平台


Watson 是 IBM 开发的一个人工智能平台,它在多个领域中提供认知计算、自然语言处理、机器学习等能力,旨在帮助企业和开发者构建智能应用。Watson 的名字来源于 IBM 创始人 Thomas J. Watson。

Watson 的初衷是通过自然语言处理和机器学习技术,模拟人类思维过程,帮助计算机更好地理解、推理和处理信息。它的应用涵盖了许多领域,包括医疗、金融、客户服务、法律等。Watson 的一些关键特性和里程碑包括:

1. 自然语言处理(NLP)

Watson 能够理解和生成人类语言,不仅支持英语,还支持其他多种语言。它的自然语言理解(NLU)能力使得 Watson 能够从大...

Read more

基础模型为什么是AI领域的一次范式转变?


基础模型(Foundation Models) 是人工智能领域的一次范式转变,因为它们改变了 AI 系统的构建、训练和部署方式。这些模型(例如 GPT、DALL·E、BERT 等)通过在大规模数据集上进行预训练,然后针对特定任务进行微调,具有以下几大优势,从而推动了 AI 发展的新阶段:

1. 任务跨越性

基础模型是在广泛的数据集上进行训练的,这使得它们能够在多种任务中进行有效的迁移。与传统的针对特定应用设计的模型(例如图像分类或语音识别模型)不同,基础模型可以通过微调来处理多种任务。举个例子,像 GPT 这样的语言模型可以在翻译、摘要、问答甚至创意写作等多个任务中都表现良好,只需从同一...

Read more

大模型开发技术栈概述


大模型开发技术栈

随着大语言模型(LLM)技术的飞速发展,构建一个高效、稳定、可扩展的技术架构已经成为实现商业应用的关键。一个全面的大模型技术栈不仅要具备强大的生成和推理能力,还需要高效的数据管理、安全保障、操作协调及用户交互设计。以下是对大模型技术栈各个层次的深入剖析,包括UI层、会话处理层、数据审计与安全层、操作编排层、LLM增强层以及LLM核心层,它们共同推动着大模型应用的落地和迭代。


1. UI层(用户界面层)

UI层是用户与系统交互的窗口,其设计决定了用户的体验与互动效率。优秀的UI层不仅要简洁直观,还需要灵活地支持多种输入方式,方便用户高效地与系统进行交互。

核心功能:

    ...

Read more

百度飞桨PaddlePaddle-产业级深度学习平台


你说的应该是百度飞桨 。飞桨(PaddlePaddle)是百度自主研发的中国首个开源开放、功能丰富的产业级深度学习平台。以下是关于百度飞桨的一些关键信息:

核心特点

  • 动静统一的框架设计:在业内率先实现了动静统一的框架设计,兼顾科研和产业需求。既提供了动态图的灵活性,方便用户快速调试和实现想法;又具备静态图的高性能,利于模型的高效部署。
  • 丰富的模型库:拥有80+经过真实应用场景有效验证的官方模型,涵盖自然语言处理(NLP)、计算机视觉(CV)等多个领域,其中包括一些在国际竞赛中获奖的算法,能帮助用户快速搭建和应用模型。
  • 强大的并行训练能力:支持稠密参数和稀疏参数场景的超大规模深度学习并行...

Read more

深度强化学习


深度强化学习(Deep Reinforcement Learning,DRL)

深度强化学习(Deep Reinforcement Learning, DRL) 是强化学习(Reinforcement Learning, RL)和深度学习(Deep Learning)相结合的一个分支。它结合了强化学习的决策能力和深度学习在特征提取和表示学习方面的优势,使得智能体(Agent)能够在复杂的环境中通过与环境交互来进行学习,从而实现高效的决策。

DRL 在许多领域取得了突破性进展,尤其是在 游戏(如 AlphaGo、Dota 2)、自动驾驶机器人控制自然语言处理 等方面。


1. 强化学习...

Read more

知识问答-知识图谱


知识问答 (Knowledge-Based Question Answering)

知识问答(Knowledge-Based Question Answering,KBQA)是指通过自然语言处理(NLP)和知识库的结合,自动从结构化或半结构化的知识库中提取答案并提供给用户的技术。与传统的基于信息检索的问答系统不同,知识问答系统不仅要理解问题的语义,还要从知识图谱、数据库或其他结构化数据源中提取具体的信息来回答用户的问题。


1. 知识问答的基本概念

1.1 结构化与非结构化数据

知识问答通常涉及两种类型的数据:

  • 结构化数据:如数据库、知识图谱等数据源。这些数据是高度组织化和标准化的,便...

Read more

BERT-


BERT (Bidirectional Encoder Representations from Transformers)

BERT(双向编码器表示的变换器)是由Google于2018年提出的一种自然语言处理(NLP)预训练模型,它基于Transformer架构,旨在通过双向上下文的理解来提升文本理解能力,解决传统NLP模型在处理上下文信息时的局限性。

BERT的提出极大地推动了NLP领域的进步,特别是在问答系统、文本分类、命名实体识别等任务中,它的出现使得NLP模型能够通过理解上下文的方式提高理解准确度,并且在多个NLP任务上设立了新的性能基准。


1. BERT的核心概念

1.1 ...

Read more