分类目录归档:时间序列预测

DeepAR-时间序列预测模型-03003-V01


DeepAR:面向未来的智能时间序列预测引擎

在当今数据驱动的世界中,时间序列预测扮演着关键角色:零售商需要精准预测商品需求以优化库存,能源公司必须预判电力负荷来平衡电网,金融机构则依靠股价预测规避风险。然而,面对复杂多变、具有季节性和不确定性的真实数据,传统方法常显得力不从心。亚马逊科学家团队开发的DeepAR模型,正是为解决这些挑战而生,它融合了深度学习的力量与概率思维,显著提升了预测的准确性与实用性。

一、 DeepAR是什么?超越点预测的智能框架

DeepAR 本质上是一种基于深度学习的概率时间序列预测模型。其核心突破在于摒弃了传统模型仅输出单一“点预测值”的局限(如“明天销量预...

Read more

N-BEATS-时间序列预测模型-03002


N-BEATS:面向时间序列预测的纯深度学习模型

在时间序列预测领域,N-BEATS(Neural Basis Expansion Analysis for Time Series)模型于2019年由Element AI的研究团队提出,以其独特的纯深度学习架构优异的预测性能良好的可解释性,迅速成为该领域的明星模型。它摒弃了传统模型中的复杂特征工程或特定领域知识依赖,仅使用全连接层(MLP)构建,展现了深度神经网络在时间序列预测中的强大潜力。

核心设计理念与创新

  1. 完全深度学习架构:

    • N-BEATS 彻底摆脱了传统时间序列模型(如 ARIMA、指数平滑)或混合模型(如结合 LSTM...

Read more

TimesFM-时间序列预测-03001


以下是关于谷歌时间序列预测基础模型 TimesFM 的详细介绍,基于搜索结果的综合分析:


1. 模型概述

TimesFM 是谷歌研发的专为时间序列预测设计的 仅解码器(decoder-only)基础模型,参数规模为 2亿(200M),在包含 1000亿个真实世界时间点 的多样化数据集上预训练而成。其核心目标是通过大规模预训练实现 零样本(zero-shot)预测,即在无需微调的情况下直接应用于新任务,性能媲美甚至超越传统监督学习方法。


2. 核心架构与创新

架构设计

  • 分块(Patch)处理:将时间序列分割为连续的非重叠块(如32个时间点为一个输入块),每个块通过残差块转换为向量,并...

Read more