- 损失函数中的应用
- 均方误差(MSE)
- 在回归任务中,均方误差是一种常用的损失函数。对于一个包含(n)个样本的数据集,设预测值为(\hat{y}i),真实值为(y_i),均方误差的计算公式为(MSE=\frac{1}{n}\sum^{n}(\hat{y}_i - y_i)^2)。这里的((\hat{y}_i - y_i)^2)计算的是每个样本预测值与真实值差值的平方,这是一个标量。对所有样本的这个标量进行求和并取平均,得到的MSE也是一个标量,它衡量了模型预测值与真实值的整体偏差程度。例如,在预测房价的任务中,MSE越小,表示模型预测的房价与实际房价的差距越小。
- 交叉熵损失(Cros...
标量在机器学习中的应用有哪些?
评论
71 views