分类目录归档:自研课程

玻尔兹曼机概述


探秘玻尔兹曼机:解锁人工智能的“能量密码”

从统计物理到 AI:玻尔兹曼机的诞生

在科学的广袤版图中,不同学科之间常常存在着奇妙的联系,就像隐藏在宇宙深处的暗线,将看似分离的知识领域悄然连接。统计物理学与人工智能领域的交融,便是这样一段引人入胜的故事,而玻尔兹曼机,正是这段故事中一颗璀璨的明珠。

统计物理学,作为物理学的一个重要分支,主要研究大量微观粒子组成的宏观系统的性质和行为。在这个领域中,玻尔兹曼分布占据着举足轻重的地位。它描述了处于热平衡状态下,粒子在不同能量状态下的概率分布情况,其核心思想在于,系统更倾向于处于能量较低的状态,且温度对粒子的分布有着关键影响。简单来说,就如同在一...

Read more

机器学习超参数:从理论到实践的核心探索



机器学习超参数:从理论到实践的核心探索

一、引言

在构建机器学习模型的过程中,数据、算法与超参数如同“铁三角”,共同决定了模型的最终性能。其中,超参数调优往往是最容易被低估却至关重要的环节。一个优秀的模型架构可能因不当的超参数选择而表现平庸,而简单的算法搭配精细调参却可能实现惊人效果。本文将从基础概念切入,系统解析超参数的优化方法论、实用技巧及前沿趋势,为从业者提供一份兼顾理论与实践的调参指南。


二、超参数基础概念

1. 定义与作用

超参数(Hyperparameters)是模型训练前预设的配置参数,与模型通过数据自动学习的参数(如线性回归的权重)有本质区别。例如,在训练神经网络时,...

Read more

Cot概述


CoT:开启人工智能推理新时代

从 “黑箱” 到透明:CoT 是什么

在人工智能飞速发展的当下,大语言模型(LLM)已成为自然语言处理领域的核心力量。它们能够生成流畅的文本、回答复杂的问题,甚至进行创造性写作,展现出令人惊叹的语言能力。然而,传统大语言模型在处理问题时,就像一个神秘的 “黑箱”。以 GPT-3 为例,当你向它提出一个问题,它会迅速给出答案,但却无法清晰展示得出这个答案的具体思考过程。这种缺乏透明度的决策机制,使得用户难以理解答案的来源和可靠性,也限制了模型在一些对推理过程要求严格的领域中的应用。

直到 2022 年,谷歌研究人员在《Chain-of-Thought Pro...

Read more

Cot思维链:人工智能推理能力的革命性突破


Cot思维链:人工智能推理能力的革命性突破

近年来,随着大语言模型(LLM)的快速发展,人工智能在文本生成、问答系统等任务中展现出惊人的能力。然而,模型如何得出答案的"黑箱"特性始终是制约其可信度的关键瓶颈。2022年,Google研究人员在《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》论文中提出的思维链(Chain-of-Thought, CoT)技术,通过让AI展示完整的推理步骤,不仅显著提升了复杂问题的解决能力,更打开了理解机器认知过程的窗口。这项技术正在重塑人机协作的范式,成为AI可解...

Read more

多智能体框架-视频文字


多智能体框架(Multi-Agent Framework)是支持多个智能体(Agent)协同工作、交互和决策的系统架构,广泛应用于分布式人工智能、机器人协作、自动驾驶、游戏AI、供应链优化等领域。以下是多智能体框架的核心概念、关键组成和典型应用方向:


1. 多智能体框架的核心概念

  • 智能体(Agent):具有自主决策能力的实体,能感知环境、处理信息并采取行动。
  • 协作与竞争:智能体之间可能合作完成共同目标,也可能因资源竞争而产生博弈。
  • 去中心化:无需全局控制中心,智能体通过本地规则或通信实现系统级目标。
  • 环境动态性:智能体需适应环境变化(如其他智能体的行为、外部事件等)。

2. 多智...

Read more

向量数据库概述-视频文字


向量数据库概述

向量数据库是一种专门用于存储、管理和高效检索高维向量数据的数据库系统。与传统数据库基于精确匹配的查询不同,向量数据库通过计算向量之间的相似性(如余弦相似度、欧氏距离等)实现近似搜索,尤其擅长处理图像、文本、音频等非结构化数据转化而来的高维向量。其核心价值在于解决人工智能和大数据场景下海量高维数据的实时检索需求,广泛应用于推荐系统、图像搜索、自然语言处理等领域。


核心原理

1. 向量空间模型

向量数据库基于向量空间模型(VSM),将数据映射为高维空间中的点。例如,文本可通过词嵌入(如Word2Vec、BERT)转化为向量,图像通过CNN提取特征向量。相似性通过向量间的距离...

Read more

向量数据库核心技术解析-视频文字


向量数据库核心技术解析

向量数据库作为处理高维非结构化数据的核心工具,其技术体系融合了信息检索、机器学习与分布式系统等多个领域的成果。本文将从索引技术、相似性度量、存储优化、查询处理、分布式架构及嵌入模型六大核心技术展开分析,并结合实际应用场景探讨其技术演进方向。


一、高效索引技术

索引技术是向量数据库实现快速检索的核心。传统数据库的B树、倒排索引等结构难以应对高维数据的“维度灾难”,因此向量数据库采用以下三类索引优化策略:

  1. 层次化图结构索引(HNSW)
    基于小世界网络理论构建多层图结构,通过贪心算法在层级间快速导航,实现高维向量的近似最近邻搜索(ANN)。HNSW在保证90...

Read more

FinSearch概述-视频文字


FinSearch 概述、原理与架构解析

一、概述

FinSearch 是面向金融投研场景的专业化智能搜索系统,旨在通过结合大模型能力与垂直领域数据处理技术,提升金融信息检索与分析效率。其核心目标是为投资者、分析师等提供快速、精准的多模态金融数据(如研报、公告、会议纪要)搜索与推理服务,并支持复杂的投研决策分析。典型应用包括关联标的挖掘、企业基本面分析、市场趋势预测等。

以熵简科技的 AlphaEngine 为例,该系统基于开源大模型 DeepSeek-R1 构建,结合高质量的投研数据与思维链(CoT)轨迹蒸馏,形成了具备深度推理能力的金融大模型 FinGPT Deep,实现了从自然语言...

Read more

Data Mesh 核心概念、架构与概述


Data Mesh 核心概念、架构与概述

1. 核心概念
Data Mesh 是一种去中心化的数据架构范式,由 Zhamak Dehghani 提出,旨在解决传统集中式数据架构(如数据仓库、数据湖)在规模化、敏捷性和协作性上的瓶颈。其核心原则包括:

  • 领域自治(Domain Ownership)
    数据由业务领域团队直接负责,每个领域团队拥有自己的数据产品(Data Product),确保数据贴近业务需求,减少跨团队依赖。

  • 数据即产品(Data as a Product)
    数据被视为独立的产品,需满足可发现、可理解、可信、可交互等标准,例如提供元数据、SLA(服务等级协议)和...

Read more

数据标签体系:核心概念、架构、应用场景与最佳实践-视频文字


数据标签体系:核心概念、架构、应用场景与最佳实践

一、核心概念

  1. 数据标签(Data Tag)
  2. 数据标签是对数据实体(如用户、商品、事件等)的属性、特征或分类的抽象描述,例如“高价值用户”“热销商品”“风险交易”等。
  3. 标签可以是静态(如性别、地域)或动态(如近30天活跃度)。

  4. 标签体系(Tagging System)

  5. 标签体系是一套结构化、层次化的标签集合,通过逻辑关系(如父子、并列、依赖)组织,确保标签的可复用性和可扩展性。
  6. 例如,电商场景的标签体系可能包含“用户画像”“商品分类”“行为分析”等大类。

  7. 标签分类与层级

  8. 基础标签:直接来源于原始数据(如...

Read more