分类目录归档:自研课程

BERT架构-V0-视频文字


BERT(Bidirectional Encoder Representations from Transformers)是Google于2018年提出的预训练语言模型,通过双向上下文建模显著提升了自然语言处理任务的性能。以下是对BERT架构的详细解析:


1. 核心架构

BERT基于Transformer的编码器(Encoder)构建,核心是多层自注意力机制(Self-Attention)和前馈神经网络(Feed-Forward Network)的堆叠。

1.1 Transformer编码器层

  • 自注意力机制(Self-Attention)
    每个词通过Query、Key、Valu...

Read more

贝叶斯原理概述-视频文字


贝叶斯原理概述

贝叶斯原理(Bayes' Theorem)是统计学与概率论中极具影响力的理论框架,其核心思想在于通过动态更新认知,将主观经验与客观数据相结合,从而实现对不确定性的量化与优化。这一理论由18世纪英国数学家托马斯·贝叶斯提出,后经拉普拉斯等人发展完善,逐渐成为现代数据分析、人工智能及决策科学的基础工具。贝叶斯方法不仅提供了一种数学工具,更体现了一种认知哲学:人类对世界的理解本质上是概率化的、可迭代的,且永远处于被新证据修正的过程中。


贝叶斯思想的哲学内核

贝叶斯原理的突破性在于其对“概率”的重新定义。传统频率学派将概率视为长期重复事件中发生的频率,强调客观性与经验性;而贝叶...

Read more

蒙特卡洛方法的原理-视频文字



蒙特卡洛方法的原理

蒙特卡洛方法是一种通过随机性解决确定性问题的计算策略,其核心是“用大量随机实验的统计结果逼近真实答案”。它不依赖复杂的数学推导,而是通过模拟现实中的随机过程,用概率和统计规律找到问题的解。以下是其核心原理的通俗解析:


1. 核心思想:随机实验替代精确计算

许多复杂问题(如高维积分、最优决策、概率预测)难以用传统数学工具直接求解。蒙特卡洛方法另辟蹊径:
- 将问题转化为概率模型:例如,计算圆的面积可转化为“随机撒点落在圆内的概率”。
- 用随机实验模拟可能性:通过生成大量随机样本(如抛硬币、随机路径、虚拟场景),模拟所有可能的情况。
- 统计结果逼近真实解:根据“大...

Read more

程序化交易架构概述-视频文字


程序化交易的背景下,架构设计是至关重要的一环,它决定了交易系统的稳定性、效率和执行速度。程序化交易涉及通过算法自动执行交易指令,以便实现更高效和更快速的市场响应。在学术领域中,程序化交易架构一般分为以下几个关键组成部分:

1. 数据采集层

数据采集层是程序化交易架构的基础,它负责从各个数据源获取实时和历史市场数据(如股票价格、订单簿、市场深度等)。这些数据为交易算法提供了必要的输入。

  • 数据源:包括证券交易所API、数据供应商(如Bloomberg、Reuters)、以及其他市场数据提供商。
  • 数据处理:需要进行清洗、标准化和存储,以便后续使用。常见的处理方法包括对缺失值的填补、异常值的...

Read more

知识蒸馏:原理、概述与分类-视频文字


知识蒸馏:原理、概述与分类

一、引言

随着深度学习技术的飞速发展,神经网络模型的规模和复杂性不断增加。大型深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)和自注意力模型(Transformer),在多个任务上取得了显著的成功。然而,这些模型通常需要大量的计算资源和内存,这使得它们在实际应用中难以部署,尤其是在边缘设备或资源受限的环境中。为了缓解这一问题,知识蒸馏(Knowledge Distillation, KD)作为一种模型压缩技术应运而生,通过从复杂模型向简化模型传递知识,帮助实现高效、轻量化的模型。

知识蒸馏的核心思想是通过将大模型(教师模型)所学习到的知识迁移到小...

Read more

主成分分析 (PCA) 原理概述-视频文字


好的,Scribe!我会在原有内容的基础上扩展,确保达到约600字。✨🖋️


主成分分析 (PCA) 原理概述

主成分分析(Principal Component Analysis,PCA)是一种常用于数据降维的技术,其主要目的是在尽量保留数据中大部分变异性的基础上,减少数据的维度。这对于高维数据(例如图像、基因表达数据等)尤其重要,因为降维能够提高数据处理效率,并有助于可视化和分析。PCA广泛应用于机器学习、统计学、图像处理、自然语言处理等领域。

1. 数据中心化

PCA的第一步是对数据进行中心化。即对于每个特征维度,减去其均值。为什么要这样做呢?因为数据的均值可能会引起偏移,导致在分...

Read more

智能投顾平台-原理架构-视频文字


智能投顾平台(Robo-Advisor)的核心原理是通过算法模型、数据分析和自动化流程为投资者提供个性化的投资建议和管理服务。以下是智能投顾平台的基本原理和技术架构:

1. 智能投顾的原理

智能投顾平台的核心原理包括: - 数据分析:平台收集大量的市场数据、用户风险偏好、投资目标等信息,使用机器学习和统计模型分析这些数据。 - 投资策略:根据用户的风险承受能力、投资期限、预期收益等,智能投顾平台会通过资产配置和投资组合优化等方法制定个性化的投资策略。 - 自动化决策:平台自动执行投资决策,包括资产配置、再平衡等,确保投资组合与用户目标保持一致。 - 持续监控与调整:智能投顾平台会定期监控...

Read more

感知机、单层感知机与多层感知机原理介绍-视频文字


感知机、单层感知机与多层感知机:专业解析

感知机(Perceptron)是神经网络的基础模型,由Frank Rosenblatt于1957年提出。它模拟生物神经元的工作机制,通过学习输入数据的特征来实现分类任务。感知机的发展从单层感知机(Single-Layer Perceptron)到多层感知机(Multi-Layer Perceptron, MLP),逐步解决了从简单线性分类到复杂非线性模式识别的任务。以下是它们的专业解析。


1. 感知机(Perceptron)

感知机是一种二分类模型,其核心思想是通过学习输入特征的权重和偏置,将数据分为两类。它的结构包括输入层和输出层,输出层只有...

Read more

LLM概述-视频文字


LLM(Large Language Model,大语言模型)是一种基于深度学习的自然语言处理模型,能够理解和生成人类语言。其核心原理和架构主要基于Transformer模型,以下是LLM的原理和架构的详细说明:


1. LLM 的核心原理

LLM 的核心原理是通过大规模数据训练,学习语言的统计规律和语义表示,从而实现对自然语言的理解和生成。其关键点包括:

1.1 自监督学习

  • LLM 通常采用自监督学习(Self-supervised Learning)进行训练。
  • 训练数据是无标注的文本,模型通过预测被掩盖的词(Masked Language Modeling)或生成下一个词(Caus...

Read more