AutoML:开启机器学习自动化新时代
传统机器学习的困境
在当今数字化时代,机器学习已成为推动各行业发展的核心技术之一。从金融领域的风险预测到医疗行业的疾病诊断,从电商平台的个性化推荐到自动驾驶汽车的智能决策,机器学习的应用无处不在。然而,传统的机器学习流程在实际应用中却面临着诸多挑战。
数据处理的复杂性:在数据收集阶段,数据来源广泛且形式多样,包括结构化数据(如数据库中的表格数据)、半结构化数据(如 XML、JSON 格式的数据)和非结构化数据(如图像、文本、音频等)。收集这些数据需要耗费大量的时间和精力,并且要确保数据的完整性和准确性。以医疗领域为例,收集患者的病历信息时,可能需要...